Induced expression of insulin-like growth factor-1 by amniotic membrane-conditioned medium in cultured human corneal epithelial cells.
نویسندگان
چکیده
PURPOSE To determine the effect of amniotic membrane-conditioned medium (AMCM), via insulin-like growth factor (IGF)-1 induction, on human corneal epithelial cell (HCEC) proliferation. METHODS HCECs were cultured from corneal limbal tissue with supplemented hormonal epithelial medium (SHEM). After administration of AMCM, cell proliferation was evaluated with an MTT assay and DNA synthesis with methyl-[(3)H]-thymidine incorporation assay. RT-PCR and Western immunoblot analyses were performed, to determine potential inducible factors that may be associated with AMCM-induced cell proliferation. Neutralizing anti-IGF-1 antibody and small interfering (si)RNA were also used to clarify the role of IGF-1 in AMCM-induced HCEC proliferation. RESULTS HCEC proliferation increased after AMCM treatment. Of the cytokines known to be associated with HCEC proliferation, only IGF-1 expression was upregulated in response to AMCM in a dose- and time-dependent manner. The IGF-1 induction effect was found on both AMCM from live AM and from cryopreserved AM. HCEC proliferation was also increased by addition of exogenous IGF-1. AMCM-induced HCEC proliferation was inhibited in the presence of neutralizing anti-IGF-1 antibody and IGF-1 siRNA. Finally, Akt phosphorylation was increased in HCECs after AMCM treatment and was inhibited by IGF-1 siRNA. CONCLUSIONS IGF-1 is induced by AMCM during HCEC proliferation, and this induction may play an important role in the amniotic membrane during HCEC proliferation and migration in several intractable corneal epithelial defects.
منابع مشابه
P163: The Anti-Inflammatory Effects of Human Amniotic Membrane Epithelial Cells-Derived Condition Media
The human amniotic membrane known as the innermost single epithelial-covered layer provides many applications such as applicable anti-inflammatory and anti-cancer effects. These immunomodulatory effects belongs to the epithelial cells, a type of epiblast-derived fetal stem cells which currently used for regenerative medicine and transplantation. These cells are collected by author-prepared faci...
متن کاملComparison of Ultra Structure and Gene Expression of Cultured Limbal Stem Cells and Fresh Conjunctival, Limbal and Corneal Tissues
Purpose: The present study intends to show the characteristics of cultured limbal stem cell (CLSCs) and to compare them with normal Conjunctival (C), Limbal (L) and Cornea (K) tissues. Materials and Methods: The expressions of a set of genes potentially involved in differentiation and stemness function of limbal stem cells were assessed in freshly prepared limbal, corneal, and conjunctival tis...
متن کاملEvaluation of cytotoxic effects of condition medium from amniotic epithelial cells on cancer cell lines HeLa and MDA-MB-231
Introduction: Amniotic membrane, the innermost layer of extra-embryonic tissue, contains mesenchymal and epithelial stem cells. The amniotic mesenchymal cells have the capability of inhibition of growth of cancer cells. In this research, the effects of amniotic epithelial cells on the viability of cancer cells and the role of apoptosis in this procedure were evaluated. Methods: Amniotic mem...
متن کاملارزیابی اثرات محیط کشت رویی پرده آمنیون بر فعالیتHeat Shock Protein 90 در سلولهای سرطانی سرویکس و پستان
Background and Objective: It has recently been shown that the application of amniotic membrane conditioned medium is effective in cancer treatment. In this study, the effect of amniotic stem cells conditioned medium on the activity of Hsp90 and Cdk4 expression, were investigated in cancer cells. Materials and Methods: Two cancer cell lines HeLa and MDA-MB-231 were treated with the supernatan...
متن کاملProduction and functional characterization of human insulin-like growth factor 1
Insulin-like growth factor 1 (IGF-1) is a polypeptide hormone produced mainly by the liver in response to the endocrine growth hormone (GH) stimulus. This protein is involved in a wide range of cellular functions, including cellular differentiation, transformation, apoptosis suppression, migration and cell-cycle progression and other metabolic processes. In the current study, human heart cDNA w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 47 3 شماره
صفحات -
تاریخ انتشار 2006